
Rotation of continuous bodies

August 31, 2024

1 Introduction

The rotation of continuous bodies tends to be the engineering/physic student’s
first introduction to a tensor. However, every text I’ve read makes what feels like
a leap of faith in their derivation—the author knows what the answer is going to
be, so he just pulls out the inertia tensor from thin air and uses the classic “well
just check, it works” argument. It’s the mathematical equivalent of solving a
maze by getting 80% to the exit, then jumping to the exit and walking back to
where you were and claiming you found the exit. True enough perhaps, but it’s
not a particularly satisfying pedagogical display. Why were you leading me to
the exit if we were just going to jump to the end 80% through? What’s more
strange, it’s only one extra line of mathematics that’s needed to avoid making
this leap of faith and just complete the derivation straight through. The main
intention of this article is thus to add in that missing line to the derivation.

2 Rotation about the center of mass

Rotation about the center of mass is simpler to analyze than just an arbitrary
axis and so we will start there. We begin with an inertial reference frame with
a right-handed, orthonormal coordinate system. The x, y, and z axes’ unit
vectors respectively are x̂, ŷ, and ẑ. The origin of this coordinate system we
shall denote as N. Consider a body rotating with angular momentum ω as seen
in the inertial reference frame.

To find the angular momentum of a continuous body, we must start with the
equation for the angular momentum of a particle. We can break the body into
an infinite number of particles and sum each of the particle’s angular momentum
to find the total angular momentum of the body. To help facilitate this sum,
we’ll make a few definitions. First, let us attach point A to the body’s center
of mass. The position vector from the inertial coordinate system’s origin to the
body’s center of mass is then PNA. We will denote the position vectors from
the body’s center of mass to each infinitesimal particle as PABi

. The position
vector from the origin to each infinitesimal mass is then

PNBi
= PNA +PABi

. (1)
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The total angular momentum as observed in the inertial reference frame is
therefore

L =

∞∑
i=1

PABi
×miVNBi

(2)

where VNBi
is the velocity of particle i as seen in the inertial reference frame,

that is

VNBi
=

dPNBi

dt
. (3)

We can expand this velocity using Eq. (1).

VNBi
=

dPNA

dt
+

dPABi

dt
(4)

and then we can use the transport theorem to transform the second velocity
into the reference frame of the object as:

VABi
=

dPABi

dt
=

AdPABi

dt
+ ω ×PABi

= 0+ ω ×PABi
(5)

where
AdPABi

dt is the velocity of infinitesimal mass i as seen in the body attached
frame, which is zero since in the body-fixed frame every point on the body is
stationary (i.e. the body is not deforming). Substituting these results back into
Eq. (2) yields

L =

∞∑
i=1

miPABi
× dPNA

dt
+

∞∑
i=1

PABi
×miω ×PABi

. (6)

The first summation is zero which can be seen as follows. Notice the velocity is
independent of the summing index in this term and so can be factored out of
the sum:

∞∑
i=1

(
miPABi ×

dPNA

dt

)
=

∞∑
i=1

(miPABi )×
dPNA

dt
(7)

Now, the summation on the right hand side is a sum of position vectors weighted
by the mass at the position described by the vector. So, dividing by the total
mass, we arrive at the formula for calculating the center of mass:

1

M

∞∑
i=1

miPABi
. (8)

However, the sum being over the position vectors PABi
means that the result

will be the center of mass with respect to the point A, which is already at the
center of mass, so the entire sum is zero! Hence we may drop the first term
from Eq. (6).

Next, we can rewrite the remaing sum’s summand using the triple product
expansion as

L =

∞∑
i=1

mi [(PABi ·PABi )ω − (PABi · ω)PABi ] . (9)
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To continue any further, we must express PABi and ω in component form. The
easiest choice is to use the body-fixed frame so that the position vectors are
constant. Denoting the unit vectors of the x-, y-, and z-axes for the body-fixed
frame as x̂A, ŷA, and ẑA respectively, we have

PABi = xix̂A + yiŷA + ziẑA (10)

ω = ωxx̂A + ωyŷA + ωz ẑA (11)

The first term in the triple product is then

(PABi
·PABi

)ω =

(x2
iωx + y2i ωx + z2i ωx)x̂A + (x2

iωy + y2i ωy + z2i ωy)ŷA+

(x2
iωz + y2i ωz + z2i ωz)ẑA (12)

while the second term is

− (PABi
· ω)PABi

=

(x2
iωx + yixiωy + zixiωz)x̂A + (xiyiωx + y2i ωy + ziyiωz)ŷA+

(xiziωx + yiziωy + z2i ωz)ẑA (13)

thus the full triple product is

(PABi
·PABi

)ω − (PABi
· ω)PABi

=

((y2i + z2i )ωx − yixiωy − zixiωz)x̂A

+ ((x2
i + z2i )ωy − xiyiωx − ziyiωz)ŷA

+ ((x2
i + y2i )ωz − xiziωx − yiziωy)ẑA. (14)

Now comes the most crucial step, which is omitted in every derivation I’ve seen.
We use the fact that ωx = (ω · x̂A), and similarly for the y- and z-components,
to reinsert ω in its vector form viz.

(PABi ·PABi )ω − (PABi · ω)PABi =

(y2i + z2i )(ω · x̂A)x̂A − yixi(ω · ŷA)x̂A − zixi(ω · ẑA)x̂A

+ (x2
i + z2i )(ω · ŷA)ŷA − xiyi(ω · x̂A)ŷA − ziyi(ω · ẑA)ẑA
+ (x2

i + y2i )(ω · ẑA)ẑA − xizi(ω · x̂A)ẑA − yizi(ω · ŷA)ẑA (15)

where I have distributed the unit vectors out in anticipation of the next step.
Notice that all nine terms have a dot product of ω on the left, thus we can
factor out ω to arrive at

(PABi ·PABi )ω − (PABi · ω)PABi =

ω · [(y2i + z2i )x̂Ax̂A − yixiŷAx̂A − zixiẑAx̂A

+ (x2
i + z2i )ŷAŷA − xiyix̂AŷA − ziyiẑAẑA

+ (x2
i + y2i )ẑAẑA − xizix̂AẑA − yiziŷAẑA] (16)
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The terms x̂Ax̂A, x̂AŷA etc. are known as dyads. Order matters with dyads, so
x̂AŷA ̸= ŷAx̂A. The side we take a dot product from matters also. For instance,
if we want to dot x̂A into x̂AŷA from the left we have x̂A ·x̂AŷA = (x̂A ·x̂A)ŷA =
ŷA while dotting from the right gives us x̂AŷA · x̂A = x̂A(ŷA · x̂A) = 0.

Now, inserting Eq. (17) into Eq. (9) allows us to arrive at the inertia tensor:

L =

∞∑
i=1

ω · [mi(y
2
i + z2i )x̂Ax̂A −miyixiŷAx̂A −mizixiẑAx̂A

+mi(x
2
i + z2i )ŷAŷA −mixiyix̂AŷA −miziyiẑAẑA

+mi(x
2
i + y2i )ẑAẑA −mixizix̂AẑA −miyiziŷAẑA]

(17)

and since ω is constant for each term of the sum, it may be factored out:

L = ω ·
∞∑
i=1

[mi(y
2
i + z2i )x̂Ax̂A −miyixiŷAx̂A −mizixiẑAx̂A

+mi(x
2
i + z2i )ŷAŷA −mixiyix̂AŷA −miziyiẑAẑA

+mi(x
2
i + y2i )ẑAẑA −mixizix̂AẑA −miyiziŷAẑA] = ω · I (18)

and in the final equality we have identified the moment of inertia dyad I as

I =

∞∑
i=1

[mi(y
2
i + z2i )x̂Ax̂A −miyixiŷAx̂A −mizixiẑAx̂A

+mi(x
2
i + z2i )ŷAŷA −mixiyix̂AŷA −miziyiẑAẑA

+mi(x
2
i + y2i )ẑAẑA −mixizix̂AẑA −miyiziŷAẑA] (19)

Now, the equation for angular moment here is backwards from what is usually
shown in textbooks which is L = I ·ω. The question naturally arises then, what
is the difference and why are both valid if left and right dot products are not
generally equal for a dyad? The difference is that the moment of inertia as I
have defined it is the transpose of the moment of inertia dyad as it is usually
defined. The upshot is that the moment of inertia dyad is symmetric so dotting
from the left and right yields the same result (this all will be proved shortly). I
did this because it is pedagoically easier to arrive at this result. If we wanted
to factor out omega from the right hand side we could have done so as well, but
it requires a bit more work. Instead, at Eq. (15) we would insert x̂A · ω for ωx

rather than ω · x̂A and similarly for the y- and z-components. This would lead
to

(PABi ·PABi )ω − (PABi · ω)PABi =

(y2i + z2i )(x̂A · ω)x̂A − yixi(ŷA · ω)x̂A − zixi(ẑA · ω)x̂A

+ (x2
i + z2i )(ŷA · ω)ŷA − xiyi(x̂A · ω)ŷA − ziyi(ẑA · ω)ẑA

+ (x2
i + y2i )(ẑA · ω)ẑA − xizi(x̂A · ω)ẑA − yizi(ŷA · ω)ẑA. (20)
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To factor out ω from here, we must recognize that since (x̂A · ω) etc. are all
scalars, (x̂A ·ω)x̂A is the same as x̂A(x̂A ·ω) and similarly for the other 8 terms.
Then Eq. (20) becomes

(PABi ·PABi )ω − (PABi · ω)PABi =

[(y2i + z2i )x̂Ax̂A − yixiŷAx̂A − zixiẑAx̂A

+ (x2
i + z2i )ŷAŷA − xiyix̂AŷA − ziyiẑAẑA

+ (x2
i + y2i )ẑAẑA − xizix̂AẑA − yiziŷAẑA] · ω. (21)

This can be reinserted into Eq. (9) to arrive at

L = Ψ · ω (22)

where Ψ is defined as

Ψ =

∞∑
i=1

mi[(y
2
i + z2i )x̂Ax̂A − yixiŷAx̂A − zixiẑAx̂A

+ (x2
i + z2i )ŷAŷA − xiyix̂AŷA − ziyiẑAẑA

+ (x2
i + y2i )ẑAẑA − xizix̂AẑA − yiziŷAẑA]. (23)

Finally, comparing this equation to that of Eq. (19) term by term we see that
Ψ is equal to that of I leading to the equality Ψ = I and hence L = ω · I = I ·ω
so for the inertia dyad, the left and right dot products are equivalent.
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